Antillatoxin, a novel lipopeptide, enhances neurite outgrowth in immature cerebrocortical neurons through activation of voltage-gated sodium channels.

نویسندگان

  • S V Jabba
  • A Prakash
  • S M Dravid
  • W H Gerwick
  • T F Murray
چکیده

Antillatoxin (ATX) is a structurally novel lipopeptide that activates voltage-gated sodium channels (VGSC) leading to sodium influx in cerebellar granule neurons and cerebrocortical neurons 8 to 9 days in vitro (Li et al., 2001; Cao et al., 2008). However, the precise recognition site for ATX on the VGSC remains to be defined. Inasmuch as elevation of intracellular sodium ([Na(+)](i)) may increase N-methyl-d-aspartate receptor (NMDAR)-mediated Ca(2+) influx, Na(+) may function as a signaling molecule. We hypothesized that ATX may enhance neurite outgrowth in cerebrocortical neurons by elevating [Na(+)](i) and augmenting NMDAR function. ATX (30-100 nM) robustly stimulated neurite outgrowth, and this enhancement was sensitive to the VGSC antagonist, tetrodotoxin. To unambiguously demonstrate the enhancement of NMDA receptor function by ATX, we recorded single-channel currents from cell-attached patches. ATX was found to increase the open probability of NMDA receptors. Na(+)-dependent up-regulation of NMDAR function has been shown to be regulated by Src family kinase (SFK) (Yu and Salter, 1998). The Src kinase inhibitor PP2 abrogated ATX-enhanced neurite outgrowth, suggesting a SFK involvement in this response. ATX-enhanced neurite outgrowth was also inhibited by the NMDAR antagonist, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), and the calmodulin-dependent kinase kinase (CaMKK) inhibitor, 1,8-naphthoylene benzimidazole-3-carboxylic acid (STO-609), demonstrating the requirement for NMDAR activation with subsequent downstream engagement of the Ca(2+)-dependent CaMKK pathway. These results with the structurally and mechanistically novel natural product, ATX, confirm and generalize our earlier results with a neurotoxin site 5 ligand. These data suggest that VGSC activators may represent a novel pharmacological strategy to regulate neuronal plasticity through NMDAR-dependent mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gambierol Inhibition of Voltage-Gated Potassium Channels Augments Spontaneous Ca Oscillations in Cerebrocortical Neurons

Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebro...

متن کامل

Gambierol inhibition of voltage-gated potassium channels augments spontaneous Ca2+ oscillations in cerebrocortical neurons.

Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebro...

متن کامل

Sodium channel activation augments NMDA receptor function and promotes neurite outgrowth in immature cerebrocortical neurons.

A range of extrinsic signals, including afferent activity, affect neuronal growth and plasticity. Neuronal activity regulates intracellular Ca(2+), and activity-dependent calcium signaling has been shown to regulate dendritic growth and branching (Konur and Ghosh, 2005). NMDA receptor (NMDAR) stimulation of Ca(2+)/calmodulin-dependent protein kinase signaling cascades has, moreover, been demons...

متن کامل

Voltage-gated Calcium Channels Are Not Affected by the Novel Anti-epileptic Drug Lacosamide.

The novel anti-epileptic drug lacosamide targets two proteins - voltage-gated sodium channels and collapsin response mediator protein 2 (CRMP-2) - suggesting dual modes of action for lacosamide. We recently identified the neurite outgrowth and axonal guidance protein CRMP-2 as a novel partner and regulator of the presynaptic N-type voltage-gated Ca(2+) channel (CaV2.2) [Brittain et al., J. Biol...

متن کامل

Influence of lipid-soluble gating modifier toxins on sodium influx in neocortical neurons.

The electrical signals of neurons are fundamentally dependent on voltage-gated sodium channels (VGSCs), which are responsible for the rising phase of the action potential. An array of naturally occurring and synthetic neurotoxins have been identified that modify the gating properties of VGSCs. Using murine neocortical neurons in primary culture, we have compared the ability of VGSC gating modif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 332 3  شماره 

صفحات  -

تاریخ انتشار 2010